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We study two-dimensional Coulomb systems confined in a disk with ideal
dielectric boundaries. In particular we consider the two-component plasma in
detail. When the coulombic coupling constant C=2 the model is exactly solv-
able. We compute the grand potential, densities and correlations. We show that
the grand potential has a universal logarithmic finite-size correction as predicted
in previous works. This logarithmic finite-size correction is also found in the
free energy of another solvable model: the one-component plasma.
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1. INTRODUCTION

Solvable models of Coulomb systems have attracted attention for quite
some time. Very recently the two-dimensional two-component plasma, a
model of two species of point-particles with opposite charges ±q at inverse
temperature b=1/kBT, has been solved in its whole range of stability
C :=bq2 < 2 by using a mapping of this system onto a sine-Gordon field
theory. (1) With this mapping the grand-partition function and other bulk
properties of the system can be computed exactly. Also some surface
properties near a metallic wall (2) and an ideal dielectric wall (3) have been
investigated. However this mapping onto a sine-Gordon model does not
give (yet) any information on correlation functions.

When the coupling constant C=2 the corresponding sine-Gordon
model is at its free fermion point and additional information on the system
can be obtained. This fact is well known and much work has been done on
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the two-component plasma at C=2 since the pioneer work of Gaudin on
this model. (4) In particular the two-component plasma at C=2 has been
studied in different geometries: near a plane hard wall or a polarizable
interface, (5) a metallic wall, (6) in a disk with hard walls (7) and in a disk with
metallic walls (8)....

However it was not until very recently that the special case of ideal
dielectric boundaries (that is Neumann boundary conditions imposed on
the electric potential) has been studied by Jancovici and Šamaj (9) for a
system near an infinite plane wall or confined in a strip. The technical dif-
ficulty with this kind of boundary conditions is that the two-component
plasma must be mapped onto a four-component free Fermi field instead of
a two-component free Fermi field as in all other cases of boundary condi-
tions.

A very interesting result of ref. 9 is that when the system is confined in
a strip of width W made of ideal dielectric walls, the grand potential per
unit length exhibits a universal finite-size correction equal to p/24W which
is the same finite-size correction for a system confined in a strip made of
ideal conductor walls. (8) These finite-size corrections have been explained (8)

by noting that if one disregards microscopic detail the grand-partition
function of a Coulomb system is the inverse of the partition function of the
Gaussian model.

Due to this analogy with the Gaussian field theory, a Coulomb system
in a confined geometry is expected to exhibit universal logarithmic finite
size-corrections, for instance in a disk of radius R the grand potential
should have a correction (1/6) ln R. For the analogy with the Gaussian
field theory to be complete one should impose conformally invariant
boundary conditions to the electric potential, for instance Dirichlet
boundary conditions (ideal metallic walls) or Neumann boundary condi-
tions (ideal dielectric walls). The case of Dirichlet boundary conditions was
treated in ref. 8.

In this paper we study the two-component plasma at C=2 in a disk
with Neumann boundary conditions. One of the main motivations for this
work is to show that the system exhibits in fact the expected universal
logarithmic finite-size correction.

The outline of this paper is the following. In Section 2, we present the
model and adapting the method of ref. 9 we map the two-component
plasma onto a four-component free Fermi field. In Section 3, we compute
the grand potential and its large-R expansion. We also compute the large-R
expansion of the free energy of the one-component plasma which was
solved some time ago. (11) In Section 4, we compute densities and correlation
functions.
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2. THE MODEL

The system is composed of two species of point-particles with opposite
charges ±q. The particles are confined in a disk D of radius R. It will be
very useful to work with the complex coordinate z=re if of a point r. The
material outside the disk is supposed to be an ideal dielectric. This imposes
Neumann boundary conditions on the electric potential: the interaction
potential v(r, rŒ) between two charges located at r and rŒ is the solution of
Poisson equation

Drv(r, rŒ)=−2pd(r− rŒ) (2.1)

with Neumann boundary conditions. However, it is well-known (10) that any
solution of Poisson equation (2.1) in a closed domain D cannot satisfy
homogeneous Neumann boundary conditions “nv(r, rŒ)=0 for r ¥ “D, since
Gauss theorem implies that ?“D “nv(r, rŒ) dl=−2p. A natural choice is to
impose inhomogeneous Neumann boundary conditions to the potential
“nv(r, rŒ)=−2p/L, with L the perimeter of the domain D. In the case of
the disk of radius R this gives

“nv(r, rŒ)=−1/R for r ¥ “D (2.2)

This impossibility for the electric potential between pairs to obey homoge-
neous Neumann boundary conditions is not a problem for a system glo-
bally neutral in which the total electric potential will satisfy homogeneous
Neumann boundary conditions if the pair potential satisfies (2.2). It should
be noted that for an infinite wall boundary it is possible for the electric
potential between pairs to obey homogeneous Neumann boundary condi-
tions. (9)

The solution of Poisson equation (2.1) with boundary conditions (2.2)
in a disk can be obtained obtained by usual methods of electrostatics
(images, etc ...). The solution is

v(r, rŒ)=− ln
|z−zŒ| |R2−zz̄Œ|

a2R
(2.3)

where a is some irrelevant length scale and z̄ is the complex conjugate of z.
It can be easily checked that solution (2.3) can also be obtained as the limit
of the boundary value problem where outside the disk there is a dielectric
with dielectric constant EQ 0 (up to some constant terms). (11)
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It will be useful to introduce the image rg of a point r by zg=R2/z̄.
The electric potential between pairs can then be written as

v(r, rŒ)=− ln
|z−zŒ| |z −g−z| |z̄Œ|

a2R
(2.4)

and can be interpreted as the potential in r due to a charge in rŒ and a
image charge with equal sign and magnitude located at r −g.

If the temperature is not high enough the two-dimensional two-com-
ponent plasma is not well defined, this is due to the collapse between pairs
of opposite sign. If the coupling constant C :=bq2 < 2 the system is stable.
Here we will study the case C=2. In order to avoid the collapse we will
work initially with two interwoven lattices U and V. Positive particles with
complex coordinates {ui} live in the sites of lattice U and negative particles
with complex coordinates {vi} live in the sites of V. We shall work in the
grand-canonical ensemble and will only consider neutral configurations.
The Boltzmann factor of a system with N positive particles and N negati-
ves particles at C=2 is

e−bHN=a2N D
N

i=1
(R2−|ui|2)(R2−|vi|2)

×
< i < j (|ui−uj| |vi−vj| |R

2−uiūj| |R2−viv̄j|)2

< i, j (|ui−vj| |R
2−uiv̄j|)2

(2.5)

The first product corresponds to the self-energies of the particles and the
other terms to the interactions between pairs. Introducing the images this
can be rewritten as

e−bHN=a2ND
i

1 R2
ūiv̄i
2 D
N

i=1
(ui−u

g
i )(vi−v

g
i )

×
< i < j (ui−uj)(u

g
i −u

g
j )(ui−u

g
j )(u

g
i −uj)(vi−vj)(v

g
i −v

g
j )(vi−v

g
j )(v

g
i −vj)

< i, j (ui−vj)(u
g
i −v

g
j )(ui−v

g
j )(u

g
i −vj)

(2.6)

By using Cauchy’s double alternant formula

det 1 1
zi−z

−

j

2
(i, j) ¥ {1, ..., 2N}2

=(−1)N(2N−1)
< i < j (zi−zj)(z

−

i−z
−

j)
< i, j (zi−z

−

j)
(2.7)

with

z2i−1=ui, z2i=u
g
i , z −2i−1=vi, z −2i=v

g
i , (2.8)
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we find that the Boltzmann factor can be written as a 2N×2N determinant

e−bHN=(−1)ND
i

1a2R2
ūiv̄i
2 det R

1
ui−vj

1
ui−v

g
j

1
ugi −vj

1
ugi −v

g
j

S (2.9)

Introducing the factors Ra/ūi into the last N rows of the determinant and
the factors Ra/v̄i into the last N columns, we finally arrive at the expres-
sion

e−bHN=(−1)N det R
a
ui−vj

aR
uiv̄j−R2

aR
R2−ūivj

a
v̄j−ūi

S (2.10)

The grand-canonical partition function with position dependent fugacities
z(u) and z(v) for positive and negative particles reads

X=1+ C
.

N=1
C

u1 < · · · < uN ¥ U
v1 < · · · < vN ¥ V

1D
N

i=1
z(ui)z(vi)2 e−bHN (2.11)

We shall now closely follow ref. 9 to show that the grand-partition
function can be written as a ratio of two Pfaffians. Using the same nota-
tions as in ref. 9, let us introduce a couple of Grassmann anticommuting
variables (k1u, k

2
u) for each site u ¥ U and similar Grassmann variables for

each site in V. The Grassmann integral for any antisymmetric matrix A

Z0=F dh exp (12
thAh) (2.12)

with th=(..., k1u, k
2
u, ..., k

1
v, k

2
v, ...) and dh=<v dk

2
v dk

1
v <u dk

2
u dk

1
u is the

Pfaffian of the matrix A

Z0=Pf(A) (2.13)

Let us denote the average of a quantity O by

OOP=
1
Z0

F dh O exp 11
2
thAh2 (2.14)
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It is well known that (12)

OhihjP=(A−1)ji (2.15)

For our purposes let us define the matrix A as having inverse elements

(A−1)abuuŒ=0 (2.16a)

(A−1)abvvŒ=0 (2.16b)

(A−1)abuv=R
a
u−v

aR
uv̄−R2

aR
R2−ūv

a
v̄− ū

S (2.16c)

(A−1)abvu=R
a
v−u

aR
vū−R2

aR
R2−v̄u

a
ū− v̄

S (2.16d)

The indexes (a, b) ¥ {1, 2}2 label the rows and columns respectively. The
matrix A is clearly antisymmetric as required. We now introduce the anti-
symmetric matrix M

Mab
uuŒ=duuŒ 1

0 z(u)

−z(u) 0
2 (2.17a)

Mab
vvŒ=dvvŒ 1

0 z(v)

−z(v) 0
2 (2.17b)

Mab
uv=0 (2.17c)

Mab
vu=0 (2.17d)

The Grassmann integral

Z=F dh exp [12
th(A+M) h] (2.18)

is equal to

Z=Pf(A+M) (2.19)
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The ratio Z/Z0 can be expanded in powers of the fugacities as

Z
Z0
=1+ C

.

N=1
C

u1 < · · · < uN ¥ U
v1 < · · · < vN ¥ V

1D
N

i=1
z(ui)z(vi)2 7D

N

i=1
(k1uik

2
uik
1
vik
2
vi)8 (2.20)

Using Wick theorem for fermions we find that

7D
N

i=1
(k1uik

2
uik
1
vik
2
vi)8=(−1)N det R

a
ui−vj

aR
uiv̄j−R2

aR
R2−ūivj

a
v̄j−ūi

S (2.21)

Comparing equations (2.20) and (2.21) with equations (2.11) and (2.10) we
immediately conclude that the grand-canonical partition of the Coulomb
system X is the ratio of two Pfaffians

X=
Z
Z0
=

Pf(A+M)
Pf(A)

(2.22)

Using the fact that the Pfaffian is the square root of the determinant we
can write the grand potential as

bW=− ln X=− 12 ln det(1+K)=− 12 Tr ln(1+K) (2.23)

where the matrix K is K=MA−1 and has matrix elements

KabssŒ(r, rŒ)=ds, −sŒzs(r) R
aR

R2−z̄zŒ
a
z̄Œ−z̄

a
zŒ−z

aR
R2−zz̄Œ

S (2.24)

We have introduced the notation u=(r,+), v=(r, −), z(u)=z+(r),
z(v)=z−(r) and (s, sŒ) ¥ {− ,+}2.

3. THE GRAND POTENTIAL

3.1. Formal expression of the grand potential

To compute explicitly the grand potential from equation (2.23) we
must find the eigenvalues of K. From now on we will consider the conti-
nuum limit where the spacing of the lattices U and V goes to zero. In this

Two-dimensional Coulomb Systems in a Disk with Ideal Dielectric Boundaries 951

File: KAPP/822-joss/104_5-6 342338 - Page : 7/26 - Op: DS - Time: 11:36 - Date: 13:08:2001



limit it is natural to work with the rescaled fugacity (5) m=2paz/S where S
is the area of a lattice cell. Also in this limit some bulk quantities will be
divergent, because of the collapse of particle of opposite sign, and must be
cutoff. Correlations in contrast have a well defined continuum limit.

Let {k (a)s (r)}s=±; a=1, 2 be the eigenvectors of m−1K and 1/l the corre-
sponding eigenvalues. The eigenvalue problem for K is the set of integral
equations

l

2p
F
D
drŒ 5 R

R2−z̄zŒ
k (1)−s(rŒ)+

1
z̄Œ−z̄

k (2)−s(rŒ)6=k (1)s (r) (3.1a)

l

2p
F
D
drŒ 5 1

zŒ−z
k (1)−s(rŒ)+

R
R2−zz̄Œ

k (2)−s(rŒ)6=k (2)s (r) (3.1b)

These integral equations (3.1) can be transformed into differential equa-
tions plus some boundary conditions using the well-known identities

“

“z
1
z̄− z̄Œ

=
“

“z̄
1
z−zŒ

=pd(r− rŒ). (3.2)

Applying “z to equation (3.1a) and “z̄ to equation (3.1b) yields

−
l

2
k (2)−s(r)=“zk

(1)
s (r) (3.3a)

−
l

2
k (1)−s(r)=“z̄k

(2)
s (r) (3.3b)

These differential equations (3.3) can be combined into the Laplacian
eigenvalue problem

Dk (a)s =l
2k (a)s (3.4)

which must be complemented with the following boundary conditions. If
r=R is on the boundary, z=Re if, it can be easily seen from integral
equations (3.1) that

k (1)s (R)+e
ifk (2)s (R)=0 (3.5)

An elementary solution of equation (3.4) in the present disk geometry is

k (2)s (r)=Ase
iafIa(lr) (3.6)
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with, from equation (3.3b),

k (1)−s(r)=−Ase
i(a+1) fIa+1(lr) (3.7)

where Ia is a modified Bessel functions of order a. Boundary condi-
tions (3.5) yield the following homogeneous linear system for the coeffi-
cients As

−A−Ia+1(lR)+A+Ia(lR)=0 (3.8a)

A−Ia(lR)−A+Ia+1(lR)=0 (3.8b)

For this system to have non trivial solutions its determinant must vanish.
This gives the equation for the eigenvalue l

Ia+1(lR)2−Ia(lR)2=0 (3.9)

From equation (2.23) the grand potential then reads

bW=−
1
2

C
+.

a=−.
ln D

l

11+m
l
2=− C

+.

a=0
ln D

l

11+m
l
2 (3.10)

where the product runs for all l solution of equation (3.9). The last
equality in equation (3.10) comes from noticing that a change aQ − a−1
leave equation (3.9) invariant. To evaluate the product in equation (3.10),
let us introduce the analytic function for a positive

fa(z)=(Ia(zR)2−Ia+1(zR)2) 11
2
zR
2a a!2

2

(3.11)

The zeros of this function are the eigenvalues l and it can be checked that
f −a(z)/(zfa(z))Q 0 as zQ., so this function can be factorized as a
Weierstrass product

fa(z)=fa(0) efŒa(0) z/fa(0)D
l

11− z
l
2 ez/l (3.12)

This function satisfies fa(0)=1, f
−

a(0)=0, and fa(z)=fa(−z) so its zeros
come in pairs of opposite sign and as a consequence the exponential factors
in Weierstrass product (3.12) cancel out. We finally have

fa(z)=D
l

(1−z/l) (3.13)

where the product runs over all l solution of equation (3.9).
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Then the grand potential can finally be written as

bW=− C
+.

l=0
ln fa(−m)

=− C
+.

l=0
ln 51 2

mR
22a (a!)2 (Ia(mR)2−Ia+1(mR)2)6 (3.14)

The above expression is divergent and must be cutoff to a amax=R/s where
s is the ratio of the particles. (5)

It is interesting to notice that the grand potential can be written as the
sum of two terms

W=1
2 [W idealcond

(m)+W ideal
cond
(−m)] (3.15)

where

bW ideal
cond
(m)=−2 C

.

l=0
ln 51 2

mR
2a a!(Ia(mR)+Ia+1(mR))6 (3.16)

is the grand potential of a two-component plasma at C=2 confined in a
disk with ideal conductor boundaries (8) and

bW ideal
cond
(−m)=−2 C

.

l=0
ln 51 2

mR
2a a!(Ia(mR)−Ia+1(mR))6 (3.17)

is formally the grand potential of the two-component plasma with ideal
conductor boundaries but with the sign of the fugacity changed (which of
course does not correspond to any physical system). This interesting
decomposition of the grand potential also exist in the strip geometry. (9)

3.2. Finite-size corrections

We now compute the large-R expansion of the grand potential (3.14).
First using decomposition (3.15) we can use the results of ref. 8 for the
expansion of the grand potential with ideal conductor boundaries

bWideal
cond
(m)=−bpbpR2+bcc2pR+

1
6 ln(mR)+O(1) (3.18)
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where the bulk pressure is

bpb=
m2

2p
1 ln 2
ms
+12 (3.19)

and the surface contribution with ideal conductor boundaries is

bcc=m 1 −
1
2p

ln
2
ms
−
1
2p
+
1
4
2 (3.20)

The second contribution to the grand potential can be written as

1
2
bWideal

cond
(−m)=− C

R/s

a=0
ln 51−Ia+1(mR)

Ia(mR)
6+1
2
bWhard (3.21)

where

bWhard=−2 C
R/s

a=0
ln 5a! 1 2

mR
2a Ia(mR)6 (3.22)

is the grand potential of a two-component plasma in a disk with hard wall
boundaries. (7) The asymptotic expansion of this term was computed in
ref. 7 and reads

bWhard=−bpbpR2+bch2pR+
1
6 ln(mR)+O(1) (3.23)

with the surface contribution for hard walls

bch=m 1
1
4
−
1
2p
2 (3.24)

Finally, we only need to compute the asymptotic expansion of

S=− C
R/s

a=0
ln 51−Ia+1(mR)

Ia(mR)
6 (3.25)

This can be done with Debye asymptotic expansions for the Bessel func-
tions. First let us write S as

S=− C
R/s

a=0
ln 51−I

−

a(mR)
Ia(mR)

+
a

mR
6 (3.26)
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The Debye asymptotic expansion for ln Ia is (7, 13)

ln Ia(mR)=−
1
2

ln(2p)−
1
4

ln((mR)2+a2)

+((mR)2+a2)1/2− a ln
a+`a2+(mR)2

mR

+O([(mR)2+a2]−1/2)

Therefore

I −a(mR)
Ia(mR)

=−
1
2

mR
(mR)2+a2

+
mR

`(mR)2+a2
+
a

mR

−
amR

[(mR)2+a2]1/2[a+`(mR)2+a2]

+O((mR)2+a2)−1/2) (3.28)

Using expansion (3.28) and using Euler–MacLaurin formula for the sum
over a

C
amax

a=0

f(a)=F
amax

0
f(x) dx+

1
2
[f(0)+f(amax)]+· · · (3.29)

we finally find

S=mR+
mR
2

ln
2
ms
+O(1) (3.30)

We notice that the divergent (when the cutoff sQ 0) surface contribution

from bW ideal
cond
(m) is canceled by the contribution from S giving for the

surface tension the already known (3, 9) finite expression

bcd=
m
4

(3.31)

Putting all terms together

bW=−bpbpR2+bcd2pR+
1
6 ln(mR)+O(1) (3.32)

The grand potential has the expected (1/6) ln(mR) finite-size correction.
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The one-component plasma

As a complement to the above study of the finite-size corrections, in
this section we consider another solvable model of Coulomb system, the
two-dimensional one-component plasma at C=2. (14, 15) This systems is
composed of N particles with charge q living in a neutralizing uniform
background. The one-component plasma in a disk with ideal dielectric
boundaries was solved by Smith. (11) The canonical partition function reads

Z=1pRa
l2th
2N e3N2/4N−N(N+1)/2

×D
N

l=1
(c(l, N)−N−(2N+1−2l)c(2N+1−l, N)) (3.33)

with c(s, x)=>x0 t s−1e−t dt the incomplete gamma function and lth=
h/`2pmkBT is the thermal wavelength of the particles.

We want to study the large-R expansion of the free energy of the one-
component plasma. The free energy can be written as

bF=bFhard− C
N−1

n=0
ln 51−N−(2N−1−2n) c(2N−n, n)

c(1+n, N)
6 (3.34)

where

bFhard=−3N2/4−N ln 1pRa
l2th
2+(N(N+1)/2) lnN

− C
N

n=1
ln c(n, N) (3.35)

is the free energy of a one-component plasma in a disk with hard walls
boundaries. (14) The finite-size expansion of this terms is (7)

bFhard=bfpR2+bc ocphard2pR+
1
6 ln [(pn)1/2R]+O(1) (3.36)

with the bulk free energy per unit ‘‘volume’’ (surface)

bf=
n
2

ln 5 nl
4
th

2p2a2
6 (3.37)
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and the ‘‘surface’’ (perimeter) contribution

bc ocp
hard
=−= n

2p
F
.

0
ln
1+erf(y)

2
dy (3.38)

n=N/(pR2) is the density and erf(y)=(2/`p )>y0e−x
2
dx is the error func-

tion.
The expansion of the remaining term in equation (3.34) can be

obtained with the following uniform asymptotic expansions for the
incomplete gamma function

c(n+1, N)=
n!
2
51+erf 1N − n

`2N
2+O(1/`N)6 (3.39a)

c(2N−n, N)=
(2N−n−1)!

2

×51+erf 1n − N

`2N
2+O(1/`N)6 (3.39b)

These expansions are valid when N−n is of order `N and the corre-
sponding terms in the sum (3.34) are the ones that give a relevant contri-
bution to bF. Also for n such that N−n is of order `N using Stirling
formula we have the expansion for the factorials

(2N−n−1)!=N! NN−n−1[1+O(1/`N)] (3.40a)

n!=N! Nn−N[1+O(1/`N)] (3.40b)

Finally replacing the sum in equation (3.34) by an integral we find

bF=bFhard−`2N F
.

0
ln
2 erf(y)

1+erf(y)
dy+O(1) (3.41)

Putting this last result together with the expansion (3.36) for the hard wall
case we find

bF=bfpR2+bcocp
diel
2pR+16 ln[(pn)1/2 R]+O(1) (3.42)

with

bcocp
diel
=−= n

2p
F
.

0
ln erf(y) dy (3.43)
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For this model we find again the expected universal logarithmic finite-size
correction for the free energy.

4. DENSITY AND CORRELATIONS

4.1. Green functions

We return to the study of the two-component plasma. We are now
interested in the density and correlations functions. These can be obtained
with the Green function

G=
1
2paz

K
1+K

(4.1)

as explained in ref. 9. The density ns(r) of particles of sign s is

ns(r)=
m
2
C
a

Gaass (r, r) (4.2)

and the truncated two-body density is

n (2) Ts1s2 (r1, r2)=−
m2

2
C
a1a2

Ga1a2s1s2 (r1, r2) G
a2a1
s2s1 (r2, r1) (4.3)

From its definition (4.1) the Green functions obey the integral equations

Gss(r1, r2)+
m
2p

F dr R
R

R2−z̄1z
1
z̄− z̄1

1
z−z1

R
R2−z1z̄

S G−ss(r, r2)=0 (4.4a)

G−ss(r1, r2)+
m
2p

F dr R
R

R2−z̄1z
1
z̄− z̄1

1
z−z1

R
R2−z1z̄

S Gss(r, r2)=

=
1
2p
R R
R2−z̄1z2

1
z̄2−z̄1

1
z2−z1

R
R2−z1z̄2

S (4.4b)
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These integral equations can be transformed into the differential equations

G−ss(r1, r2)−
2
m
1 0 “z̄1

“z1 0
2 Gss(r1, r2)=0 (4.5a)

1 0 “z̄1

“z1 0
2 G−ss(r1, r2)−

m
2
Gss(r1, r2)=−

1
2
d(r1− r2) I (4.5b)

where I is the 2×2 unit matrix. These equations can be combined into

Dr1Gss(r1, r2)−m
2Gss(r1, r2)=−md(r1− r2) I (4.6)

The boundary conditions can be obtained from the integral equations (4.4).
If r1=R, z1=Re if1, is on the boundary then from the integral equa-
tions (4.4) it can be seen that

G11ssŒ(R, r2)+e
if1G21ssŒ(R, r2)=0 (4.7a)

G12ssŒ(R, r2)+e
if1G22ssŒ(R, r2)=0 (4.7b)

For the present disk geometry we look for a solution of equation (4.6) as a
Fourier series in f1. The solution for G11ss and G21ss can be written as

G11ss (r1, r2)=
1
2p

C
a ¥ Z

e iaf1[me−iaf2Ia(mr < ) Ka(mr > )

+AaIa(mr1) Ia(mr2)] (4.8a)

G21ss (r1, r2)=
1
2p

C
a ¥ Z

e iaf1BaIa(mr1) (4.8b)

where Ka is a modified Bessel function of order a, r <=min(r1, r2),
r >=max(r1, r2) and Aa and Ba are constants (with respect to r1) of integra-
tion that will be determined by the boundary conditions (4.7). From equa-
tion (4.5a) we have

G11−ss(r1, r2)=
2
m
“z̄1G

21
ss (r1, r2) (4.9a)

G21−ss(r1, r2)=
2
m
“z1G

11
ss (r1, r2) (4.9b)
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Therefore, using equations (4.8) we have, for r1 > r2,

G21−ss(r1, r2)=
1
2p

C
a ¥ Z

e i(a−1) f1Ia(mr2)[−me−iaf2Ka−1(mr1)

+AaIa−1(mr1)] (4.10a)

G11ss (r1, r2)=
1
2p

C
a ¥ Z

e iaf1Ba−1Ia−1(mr1) (4.10b)

Using the boundary conditions (4.7) we find the following linear system of
equations for Aa and Ba

AaIa(mr2) Ia+Ba−1Ia−1=−me−iaf2KaIa(mr2) (4.11a)

AaIa(mr2) Ia−1+Ba−1Ia=me−iaf2Ka−1Ia(mr2) (4.11b)

where Ia=Ia(mR) and similar definitions for the other Bessel functions
without argument. The solution of this linear system is

Aa=−me−iaf2
KaIa+Ka−1Ia−1
I2a−I

2
a−1

(4.12)

Ba−1=
e−iaf2

R
Ia(mr2)
I2a−I

2
a−1

(4.13)

And finally,

G11ss (r1, r2)=
m
2p
K0(m|r1− r2|)

+
m
2p

C
a ¥ Z

KaIa+Ka−1Ia−1
I2a−1−I

2
a

Ia(mr1) Ia(mr2) e ia(f1−f2) (4.14a)

G21ss (r1, r2)=
1
2pR

C
a ¥ Z

Ia(mr1) Ia+1(mr2)
I2a+1−I

2
a

e iaf1− i(a+1) f2 (4.14b)

G11−ss(r1, r2)=
1
2pR

C
a ¥ Z

Ia(mr1) Ia(mr2)
I2a−I

2
a−1

e ia(f1−f2) (4.14c)

G21−ss(r1, r2)=
m
2p
z̄2−z̄1
|r1− r2|

K1(m |r1− r2|)

+
m
2p

C
a ¥ Z

KaIa+Ka−1Ia−1
I2a−1−I

2
a

Ia−1(mr1) Ia(mr2) e i(a−1) f1− iaf2

(4.14d)
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From equations (4.4) it can be seen that the remaining Green functions can
be easily deduced since they obey

G12ssŒ(r1, r2)=G
21
ssŒ(r1, r2) (4.15a)

G22ssŒ(r1, r2)=G
11
ssŒ(r1, r2) (4.15b)

Other useful symmetry relations between the Green functions are

G11ssŒ(r1, r2)=G
11
ssŒ(r2, r1) G22ssŒ(r1, r2)=G

22
ssŒ(r2, r1) (4.15c)

G21ssŒ(r1, r2)=−G
21
ssŒ(r2, r1) G12ssŒ(r1, r2)=−G

12
ssŒ(r2, r1) (4.15d)

4.2. Density

The density is obtained from equation (4.2) and it reads

ns(r)=nb+
m2

2p
C
a ¥ Z

KaIa+Ia−1Ka−1
I2a−I

2
a−1

Ia(mr)2 (4.16)

where nb is the bulk density of the infinite system which is formally
divergent when the cutoff vanishes. Writing formally the bulk density as

nb=
m
2p

C
a ¥ Z

IaKa, (4.17)

rearranging the terms in equation (4.16) and using the Wronskian

IaKa−1+Ia−1Ka=
1
mR

(4.18)

the density at the boundary can be written as

ns(R)=
1
2pR

C
a ¥ Z

IaIa−1
I2a−1I

2
a

(4.19)

The above expression clearly vanishes since the term a is canceled by the
term − a+1. So we recover the expected result

ns(R)=0 (4.20)
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Fig. 1. Difference between the charge density and the bulk charge density ns(y)−nb as a
function of the distance y=R−r from the wall. The dashed curve represents case of a two-
component plasma near an infinite plane wall. The solid curve represents the density in the
disk case with mR=1.

Fig. 2. Difference between the charge density and the bulk charge density ns(y)−nb as a
function of the distance y=R−r from the wall. The dashed curve represents case of a two-
component plasma near an infinite plane wall. The solid curve represents the density in the
disk case with mR=3.
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The strong repulsion between a charge and its image cause the density at
the boundary to vanish.

In ref. 9 it was shown that the density near an infinite ideal dielectric
plane wall is

ns(y)=nb−
m2

2p
K0(2my) (4.21)

where y is the distance from the wall. To compare our result for the density
in a disk and result (4.21) near an infinite plane wall we plot in Figs. 1 and
2 both densities as a function of the distance from the wall for disks of dif-
ferent sizes R=1/m and R=3/m. In both cases the density for small dis-
tances y behaves as

ns(y)−nb=
m2

2p
ln(2my)+O(1) (4.22)

It can also be seen in Figs. 1 and 2 that the density decays faster for the
semi-infinite system (plane wall) than in the disk case. This effect is stron-
ger for the small disk mR=1.

4.3. Correlations

From the Green functions (4.14) we obtain the two-body correlation
functions using equation (4.3). Using the symmetry relations (4.15) the
correlation between a particle of sign s at r1 and a particle of sign sŒ at r2
reads

n (2) TssŒ (r1, r2)=−m
2[|G11ssŒ(r1, r2)|

2−|G21ssŒ(r1, r2)|
2] (4.23)

This gives

n (2)Tss (r1, r2)=−
m4

(2p)2
:K0(m |r1− r2|)

+C
a ¥ Z

KaIa+Ka−1Ia−1
I2a−1−I

2
a

Ia(mr1) Ia(mr2) e ia(f1−f2):
2

+1 m
2pR
22 :C

a ¥ Z

Ia(mr1)Ia+1(mr2)
I2a+1−I

2
a

e iaf1− i(a+1) f2:
2

(4.24a)
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and

n (2) T−ss (r1, r2)=
m4

(2p)2
: z̄2−z̄1
|r1− r2|

K1(m |r1− r2|)

+C
a ¥ Z

KaIa+Ka−1Ia−1
I2a−1−I

2
a

Ia−1(mr1) Ia(mr2) e i(a−1) f1− iaf2:
2

−1 m
2pR
22 : C

a ¥ Z

Ia(mr1)Ia(mr2)
I2a−I

2
a−1

e ia(f1−f2):
2

(4.24b)

From equation (4.23) and the boundary conditions (4.7) it is clear that if
one point is on the boundary

n (2) TssŒ (r1, r2)=0 if r1 ¥ “D or r2 ¥ “D (4.25)

as expected due to the strong repulsion between a charge and its image.
If r2=0 the above expressions (4.24) simplify to

n (2)Tss (r, 0)=−1
m2

2p
22 5K0(mr)+

K0I0+K1I1
I21−I

2
0

I0(mr)6
2

+1 m
2pR
22 I1(mr)2
(I21−I

2
0)
2 (4.26a)

n (2)T−ss (r, 0)=1
m2

2p
22 5−K1(mr)+

K0I0+K1I1
I21−I

2
0

I1(mr)6
2

−1 m
2pR
22 I0(mr)2
(I21−I

2
0)
2 (4.26b)

It is interesting to compare these expressions with the bulk correlations for
an infinite system (5)

n (2) Tss, bulk(r)=−1
m2

2p
22 [K0(mr)]2 (4.27a)

n (2) T−ss, bulk(r)=1
m2

2p
22 [K1(mr)]2 (4.27b)

Figures 3 and 4 show the two-body density n (2)Tss (r, 0) for particles of
same sign compared to the bulk values for different values of R and Figs. 5
and 6 show the two-body density n (2)T−ss (r, 0) for particles of different sign.
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Fig. 3. Two-body density n (2)Tss (r, 0) with one point fixed on the center of the disk for
mR=1. The dashed curve represents the bulk correlation and the solid curve the correlation
for the disk case.

For a small disk with mR=1 there is a notable difference. In the disk case
the correlations decay faster than in the bulk. This can be easily under-
stood since there is a strong repulsion between a particle and the boundary.
But this difference can be hardly noted if the disk is larger. For mR=3 it
can be seen in Fig. 4 that the difference between the bulk and the disk case
is very small (notice the change of scale in the vertical axis between Figs. 3
and 4).

Fig. 4. Two-body density n (2)Tss (r, 0) with one point fixed on the center of the disk for
mR=3. The dashed curve represents the bulk correlation and the solid curve the correlation
for the disk case.
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Fig. 5. Two-body density n (2)T−ss (r, 0) with one point fixed on the center of the disk for
mR=1. The dashed curve represents the bulk correlation and the solid curve the correlation
for the disk case.

In Figs. 7 and 8 we plot the structure function (charge-charge correla-
tion)

S(r1, r2)=2(n
(2) T
ss (r1, r2)−n

(2) T
−ss (r1, r2)) (4.28)

with one point fixed at center of the disk r2=0. For the small disk mR=1
there is a clear difference between the bulk case and the disk case. Due to
the repulsion between a particle and its image, the screening cloud is more

Fig. 6. Two-body density n (2)T−ss (r, 0) with one point fixed on the center of the disk for
mR=3. The dashed curve represents the bulk correlation and the solid curve the correlation
for the disk case.
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Fig. 7. Structure function S(r, 0) with one point fixed on the center of the disk for mR=1.
The dashed curve represents the bulk correlation and the solid curve the correlation for the
disk case.

concentrated in the center of the disk than in the bulk case. But for the
large disk mR=3 the difference is hardly noticeable. Notice again the
change of scale between Figs. 7 and 8. It is interesting to note that there is
not much difference between the bulk and the disk case if the radius of the
disk is a few orders the screening length m−1 and larger. We only notice
differences when R ’ m−1 and smaller.

Fig. 8. Structure function S(r, 0) with one point fixed on the center of the disk for mR=3.
The dashed curve represents the bulk correlation and the solid curve the correlation for the
disk case.
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This can actually be understood analytically. The large-R expression
of the correlation functions (4.26) reads

n (2)Tss (r, 0)=
m4

(2p)2
[−K0(mr)2+4pmR e−2mRK0(mr) I0(mr)]

+o(mR e−2mR) (4.29a)

n (2) T−ss (r, 0)=
m4

(2p)2
[K1(mr)2+4pmR e−2mRK1(mr) I1(mr)]

+o(mR e−2mR) (4.29b)

The first correction to the bulk values of the correlation functions is
exponentially small for large R.

5. CONCLUSION

We have studied the two-component plasma with coupling constant
C=2 confined in a disk of radius R with ideal dielectric boundaries: the
electric potential obeys Neumann boundary conditions. The model is solv-
able by using a mapping of the Coulomb system onto a four-component
free Fermi field. We have computed the grand potential, the density and
correlation functions.

The grand potential can be formally written as an average of the grand
potential for ideal conductor boundaries and the same grand potential for
ideal conductor boundaries but with the sign of the fugacity changed. For
ideal conductor boundaries the surface tension is infinite when the cutoff
vanishes. Here, the average makes the surface tension finite. This fact also
appears for a two-component plasma in a strip. (9)

The Neumann boundary conditions for the electric potential being
conformally invariant it is expected that the grand potential of the system
exhibits a universal finite-size correction (1/6)ln R. This was explicitly
checked on this solvable model. We also checked this universal finite-size
correction on the model of the one-component plasma at C=2 in the same
confined geometry which was solved some time ago. (11) In this case is the
free energy which exhibits the universal logarithmic finite-size correction.

The density vanishes for a point on the boundary of the disk. This is
expected since there is a strong repulsion between the particles and the
boundary due to the image forces. This is also true for the correlations,
they vanish if one point is on the boundary. We compared the correlations
functions for an infinite system without boundaries and the present system
in a disk. Due to the repulsion between the particles and the boundary, the
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screening cloud around a particle in the center of the disk is smaller than
the one for an infinite system. But the difference between the screening
clouds is only noticeable for disks with radius of the order of the screening
length and smaller. If the disk has a radius a few orders larger than the
screening length, the difference can be hardly noted. Actually the correc-
tions to the bulk values of the correlations functions are exponentially
small for large disks.
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